Pronóstico de incumplimientos de pago mediante máquinas de vectores de soporte: una aproximación inicial a la gestión del riesgo de crédito

Serie

  • Borradores de economía

Resumen

  • Este documento describe la metodología desarrollada por Vapnik (1995), denominada máquinas de vectores de soporte (SVM, por sus siglas en inglés) y realiza dos aplicaciones al caso de clasificación de agentes para el otorgamiento de créditos a partir de sus características. El primer caso de estudio clasifica individuos de un banco alemán. En el segundo caso se pronostica el incumplimiento del pago de créditos comerciales otorgados a empresas colombianas utilizando las características iniciales del crédito. SVM se compara con dos metodologías utilizadas en el análisis de este tipo de problemas, regresión logística y análisis lineal discriminante. Los resultados arrojan un mejor desempeño en la predicción por parte de SVM respecto a las otras dos metodologías.

fecha de publicación

  • 2011-10

Líneas de investigación

  • Clasificación
  • Máquinas de aprendizaje
  • Riesgo de crédito
  • Support Vector Machines

Issue

  • 9079