Este trabajo evalúa si las transformaciones de potencia (Box-Cox y en particular logarítmica) de series de tiempo mejoran la precisión de los pronósticos de modelos ARIMA ajustados a variables económicas de Colombia en dos periodos diferentes: 1980-1995 y 2002-2012. Se compara la habilidad predictiva de series en nivel y series transformadas a través de un experimento fuera de muestra mediante el uso de la prueba de habilidad predictiva incondicional de Giacomini y White (2006). Se encuentra que los pronósticos de las series transformadas, en general, se desempeñan mejor para el periodo 1980-1995, cuando la economía colombiana fue relativamente más volátil que durante el periodo 2002-2012. Para este último tramo de la muestra, los resultados son mixtos y para algunas series se sugiere mantenerlas en niveles; es decir, sin utilizar transformaciones de potencia.